I/O-Optimizing compilers for Sparse Matrix Vector Product
Riko Jacob (rjacob@inf.ethz.ch), Tobias Lieber (lieberto@inf.ethz.ch)

1) Motivation

Consider evaluating 2" Ay := Y7, _; ., zia;;y; for a
SXt 3

given sparse matrix A € {0, 1}
Model [1] with B = 1.

#1/0[z" Ay

in the semiring-1/O-

By [3]: = O(7#1/0[Ay])

The complexity of A-SpMxV 1s known [1]:

#I1/0|Ay| = 0O (mm { b 10g m M - hN})
For star stencil computations A on a k1 X ko-grid [4]:

#1/0|Azy| = 2k ko A

As SpMxV 1s notoriously memory bound and a key
component of many numerical applications we consider
the complexity of writing I/O-optimal programs for A:

kiko
4M—4

- O(k2)

CPU Inputs:
M L, Y

ot©
d:’ p = ox, °
e) - - 1nternal
memory
: RAM ! . 1/Os /read write .

s .
L} .

external memory
I/O- operatlons

#1/0[xt Ay] =7

Y a
"

Here we ignore I/Os due to matrix values (a;;).

2) Problem Definition

We consider two problems:

P1. Is there a program that evaluates x! Ay with at
most ¢ I/Os and memory M ?

P2. Can z! Ay be evaluated with ¢ I/Os on an I/O ma-
chine with memory M ?

To answer these questions we view the matrix A as the
adjacency matrix of a bipartite graph G(A).

r1|x2|T3|Ts|T5|T6|T7 T1e 1
Y1 1

7 | . L2e Y2
” 1] N 333:/'y3
Y4 1 1 R b o4
Ys 1 1 Lre Y5
Ye|| | 1 Lge oUs
Y7 1 Te Y7

We count the number k£ of non-compulsory I/0s. Mean-
ing the I/Os needed besides scanning x and y.

We show:

e The memory needed for computing 2! Ay in the
I/O-Model corresponds to the pathwidth [2] of
G(A) (Box 4). Therefore P1 is NP-Complete.

e Problem P2 is NP-Complete (Box 6).

e There 1s an easy 2-approximation algorithm for
the special case, M = 2, of P2 (Box 8).

4) Connection to Pathwidth

Lemma 1 The bilinearform x' Ay can be evaluated

with memory M and without non-compulsory I/Os iff
G(A) has pathwidth M — 1.

Proof For each vector-record, there 1s only one time-
interval where it 1s 1n memory.

9) Splitting a Graph to a Tree

An equivalent definition of problem P2 is: Can G(A)
be transformed by k splits into a graph G’ of pathwidth
M —1.

The variant, how many splits are needed to obtain from
G(A) atree, yields an important structural insight.

The problem Split to Tree 1s exactly solvable by split-
ting all edges off, which are not in a spanning tree.

N

Lemma 3 This split sequence is optimal.

Proof Each split increases the number of nodes by one,

Title: Parallel
Main-Memory
Indexing for
Moving-
IIIIII Object Quer

The interval thickness equals the pathwidth of G(A

The result above can be generalized to arbitrary 5 and
k.

There are FPT-algorithms to check if 2 Ay can be eval-
uated for constant M and k. They exploit the following
corollary:

Corollary 2 Splitting a node and partitioning its edges
corresponds to loading a vector-entry twice.

S

References

[1] Michael A. Bender, Gerth Stglting Brodal, Rolf Fagerberg, Riko
Jacob, and Elias Vicari. Optimal sparse matrix dense vector mul-
tiplication in the I/O-model. In Proceedings of SPAA '07, pages
61-70, 2007.

[2] Hans L. Bodlaender and Ton Kloks. Efficient and constructive al-

gorithms for the pathwidth and treewidth of graphs. J. Algorithms,
21(2):358-402, 1996.

[3] Gero Greiner and Riko Jacob. Evaluating non-square sparse bilin-

ear forms on multiple vector pairs in the I/O-model. In Proceed-
ings of MFFCS 10, pages 393-404, 2010.

[4] Philipp Hupp and Riko Jacob. Tight bounds for low dimensional
star stencils in the external memory model. CoRR, abs/1205.0606,
2012.

t Query and
Update
Workloads

ut does not change the size of the edge set.

6) NP-Completeness

The problem Cubic Planar Hamiltonian Path, which 1s
NP-complete, can be reduced to Split to Caterpillar,
which 1s equal to Split to Pathwidth 1.

Transformation:

Lemma 4 The transformed graph has pathwidth 1 after
m — n + 1 node splits iff G has an Hamiltonian path.

Proof < Split nodes as implied by transformation.
= The dangling edges 1imply a linear order on the orig-
inal vertex nodes, since their incident nodes have to be
in a bag.

This result can be generalized to arbitrary M > 2.

ETH

Eidgenossische Technische Hochschule Zurich
Swiss Federal Institute of Technology Zurich

7) Optimal Splitting of Tree to CP

Lemma S There is an efficient algorithm, which com-
putes a minimal splitting sequence, which turns a tree I’
into a caterpillar.

Root 1’ arbitrarily to apply bottom up the following
greedy coloring- and splitting-rules at each node c.

De . De ; Dangling Edge

_ Backbone Edge

Optional Edge

De s De s Pe i

Cl CQ a1 CL:E Cl CQ CL1 CLm

8) Approximation

Lemma 6 After splitting a graph G into a tree (see Box
4), applying the optimal split-to-caterpillar sequence of
G results in a collection of caterpillars.

Theorem 7 Splitting a connected graph GG into a tree T’
with t splits and splitting I into a collection of cater-
pillars with c splits is a 2-approximation algorithm for
Split-to-Caterpillar.

Proof Lemma 3 yields: ¢ < opt. Since there 1s an optfi-
mal algorithm to split a tree /" 1nto a collection of cater-
pillars and applying an optimal split-sequence of G to T’
yields a collection of caterpillars, too: ¢ < opt. Thus,
t+c <2 opt.

9) Open Problems

e Approximation bounds for Split to Pathwidth M.

e Improved Bounds for Split to Caterpillar.

e (Generalizationto B > 1.

ema
Text Box
Title: Parallel Main-Memory Indexing for Moving-
Object Query and Update Workloads
Name: Darius Šidlauskas
Affiliation: Aarhus University

