I/O-Optimizing compilers for Sparse Matrix Vector Product Riko Jacob (rjacob@inf.ethz.ch), Tobias Lieber (lieberto@inf.ethz.ch)

1) Motivation

Consider evaluating $x^T A y := \sum_{1 \le i,j \le n} x_i a_{ij} y_j$ for a given sparse matrix $A \in \{0,1\}^{s \times t}$ in the semiring-I/O-Model [1] with B = 1.

By [3]:
$$\#I/O[x^TAy] = \Theta(\#I/O[Ay])$$

The complexity of *h*-SpMxV is known [1]:

$$\#I/O[Ay] = \Theta\left(\min\left\{\frac{hN}{B}\log_{\frac{M}{B}}\frac{N}{hM}, hN\right\}\right)$$

For star stencil computations A_s on a $k_1 \times k_2$ -grid [4]:

$$\#I/O[A_s y] = 2k_1k_2 + 4\frac{k_1k_2}{M-4} + \mathcal{O}(k_2)$$

As SpMxV is notoriously memory bound and a key component of many numerical applications we consider the complexity of writing I/O-optimal programs for A:

Here we ignore I/Os due to matrix values (a_{ij}) .

2) **Problem Definition**

We consider two problems:

- P1. Is there a program that evaluates $x^T A y$ with at most ℓ I/Os and memory M?
- P2. Can $x^T A y$ be evaluated with ℓ I/Os on an I/O machine with memory M?

To answer these questions we view the matrix A as the adjacency matrix of a bipartite graph G(A).

We count the number k of non-compulsory I/Os. Meaning the I/Os needed besides scanning x and y.

3) Results

We show:

- The memory needed for computing $x^T A y$ in the I/O-Model corresponds to the pathwidth [2] of G(A) (Box 4). Therefore P1 is NP-Complete.
- Problem P2 is NP-Complete (Box 6).
- There is an easy 2-approximation algorithm for the special case, M = 2, of P2 (Box 8).

4) Connection to Pathwidth

Lemma 1 The bilinearform $x^T A y$ can be evaluated with memory M and without non-compulsory I/Os iff G(A) has pathwidth M-1.

Proof For each vector-record, there is only one timeinterval where it is in memory.

The interval thickness equals the pathwidth of G(A). \Box

The result above can be generalized to arbitrary B and

There are FPT-algorithms to check if $x^T A y$ can be evaluated for constant M and k. They exploit the following corollary:

Corollary 2 Splitting a node and partitioning its edges corresponds to loading a vector-entry twice.

References

- [1] Michael A. Bender, Gerth Stølting Brodal, Rolf Fagerberg, Riko Jacob, and Elias Vicari. Optimal sparse matrix dense vector multiplication in the I/O-model. In Proceedings of SPAA '07, pages 61-70, 2007.
- Hans L. Bodlaender and Ton Kloks. Efficient and constructive algorithms for the pathwidth and treewidth of graphs. J. Algorithms, 21(2):358–402, 1996.
- Gero Greiner and Riko Jacob. Evaluating non-square sparse bilinear forms on multiple vector pairs in the I/O-model. In Proceedings of MFCS '10, pages 393–404, 2010.
- Philipp Hupp and Riko Jacob. Tight bounds for low dimensional star stencils in the external memory model. CoRR, abs/1205.0606, 2012.

An equivalent definition of problem P2 is: Can G(A)be transformed by k splits into a graph G' of pathwidth M-1The variant, how many splits are needed to obtain from G(A) a tree, yields an important structural insight. The problem Split to Tree is exactly solvable by splitting all edges off, which are not in a spanning tree.

Proof Each split increases the number of nodes by one, ut does not change the size of the edge set.

The problem Cubic Planar Hamiltonian Path, which is NP-complete, can be reduced to Split to Caterpillar, which is equal to Split to Pathwidth 1. Transformation:

 \Rightarrow

Lemma 4 The transformed graph has pathwidth 1 after m - n + 1 node splits iff G has an Hamiltonian path.

Proof \Leftarrow Split nodes as implied by transformation. \Rightarrow The dangling edges imply a linear order on the original vertex nodes, since their incident nodes have to be in a bag. This result can be generalized to arbitrary M > 2.

5) Splitting a Graph to a Tree

Lemma 3 This split sequence is optimal.

6) NP-Completeness

7) Optimal Splitting of Tree to CP

Lemma 5 There is an efficient algorithm, which computes a minimal splitting sequence, which turns a tree T into a caterpillar.

Root T arbitrarily to apply bottom up the following greedy coloring- and splitting-rules at each node c.

8) Approximation

Lemma 6 After splitting a graph G into a tree (see Box 4), applying the optimal split-to-caterpillar sequence of *G* results in a collection of caterpillars.

Theorem 7 Splitting a connected graph G into a tree T with t splits and splitting T into a collection of caterpillars with c splits is a 2-approximation algorithm for Split-to-Caterpillar.

Proof Lemma 3 yields: $t \leq opt$. Since there is an *optimal* algorithm to split a tree T into a collection of caterpillars and applying an optimal split-sequence of G to Tyields a collection of caterpillars, too: $c \leq opt$. Thus, $t+c \leq 2 \cdot opt.$

9) Open Problems

Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

• Approximation bounds for Split to Pathwidth M.

• Improved Bounds for Split to Caterpillar.

• Generalization to B > 1.