
I/O-Optimizing compilers for Sparse Matrix Vector Product
Riko Jacob (rjacob@inf.ethz.ch), Tobias Lieber (lieberto@inf.ethz.ch)

1) Motivation
Consider evaluating xTAy :=

∑
1≤i,j≤n xiaijyj for a

given sparse matrix A ∈ {0, 1}s×t in the semiring-I/O-
Model [1] with B = 1.

By [3]: #I/O[xTAy] = Θ(#I/O[Ay])

The complexity of h-SpMxV is known [1]:

#I/O[Ay] = Θ
(

min
{

hN
B log M

B

N
hM , hN

})
For star stencil computations As on a k1 × k2-grid [4]:

#I/O[Asy] = 2k1k2 + 4 k1k2

M−4 +O(k2)

As SpMxV is notoriously memory bound and a key
component of many numerical applications we consider
the complexity of writing I/O-optimal programs for A:

Input:A

CPU

RAM

CPU

internal
memory

M

writeI/Os read

external memory
I/O-operations

form bottleneck

I/O-program

for x
T Ay

#I/O[xTAy] =?

Inputs:
x, y

Here we ignore I/Os due to matrix values (aij).

2) Problem Definition
We consider two problems:

P1. Is there a program that evaluates xTAy with at
most ` I/Os and memory M?

P2. Can xTAy be evaluated with ` I/Os on an I/O ma-
chine with memory M?

To answer these questions we view the matrix A as the
adjacency matrix of a bipartite graph G(A).

x1 x2 x3 x4 x5 x6 x7

y1

y2

y3

y4

y5

y6

y7

1

1

1

1

1

1

1

1

1

1

1

1

⇔

x1

x2

x3

x4

x5

x6

x7

y1
y2
y3
y4
y5
y6
y7

We count the number k of non-compulsory I/Os. Mean-
ing the I/Os needed besides scanning x and y.

3) Results
We show:

• The memory needed for computing xTAy in the
I/O-Model corresponds to the pathwidth [2] of
G(A) (Box 4). Therefore P1 is NP-Complete.

• Problem P2 is NP-Complete (Box 6).

• There is an easy 2-approximation algorithm for
the special case, M = 2, of P2 (Box 8).

4) Connection to Pathwidth
Lemma 1 The bilinearform xTAy can be evaluated
with memory M and without non-compulsory I/Os iff
G(A) has pathwidth M − 1.

Proof For each vector-record, there is only one time-
interval where it is in memory.

x2 x7

y2

y4 y5

x3 x4

y3

x6

y7
M

The interval thickness equals the pathwidth of G(A). tu
The result above can be generalized to arbitrary B and
k.
There are FPT-algorithms to check if xTAy can be eval-
uated for constant M and k. They exploit the following
corollary:

Corollary 2 Splitting a node and partitioning its edges
corresponds to loading a vector-entry twice.

x2 x7

y2a y2by4 y5

x3 x4

y3

x6

y7

5) Splitting a Graph to a Tree
An equivalent definition of problem P2 is: Can G(A)
be transformed by k splits into a graph G′ of pathwidth
M − 1.
The variant, how many splits are needed to obtain from
G(A) a tree, yields an important structural insight.
The problem Split to Tree is exactly solvable by split-
ting all edges off, which are not in a spanning tree.

⇒

Lemma 3 This split sequence is optimal.

Proof Each split increases the number of nodes by one,
but does not change the size of the edge set. tu

6) NP-Completeness
The problem Cubic Planar Hamiltonian Path, which is
NP-complete, can be reduced to Split to Caterpillar,
which is equal to Split to Pathwidth 1.
Transformation:

⇒

Lemma 4 The transformed graph has pathwidth 1 after
m− n + 1 node splits iff G has an Hamiltonian path.

Proof⇐ Split nodes as implied by transformation.
⇒ The dangling edges imply a linear order on the orig-
inal vertex nodes, since their incident nodes have to be
in a bag. tu
This result can be generalized to arbitrary M > 2.

7) Optimal Splitting of Tree to CP
Lemma 5 There is an efficient algorithm, which com-
putes a minimal splitting sequence, which turns a tree T
into a caterpillar.

Root T arbitrarily to apply bottom up the following
greedy coloring- and splitting-rules at each node c.

c

pc

⇒
c

pc Dangling Edge
Backbone Edge
Optional Edge

c

pc

c1 c2
...
cx

t

or
c

pc

c1 c2
...
cx

⇒
c

pc

c1 c2
...
cx

t

c

c1 c2 c3 a1
...

ax

⇒

c

c1 c2

+
c

c3 a1
...

ax

p
c

c1 c2 a1
...
ax

⇒

p
c

c1 c2 a1
...
ax

+ p

8) Approximation
Lemma 6 After splitting a graph G into a tree (see Box
4), applying the optimal split-to-caterpillar sequence of
G results in a collection of caterpillars.

Theorem 7 Splitting a connected graph G into a tree T
with t splits and splitting T into a collection of cater-
pillars with c splits is a 2-approximation algorithm for
Split-to-Caterpillar.

Proof Lemma 3 yields: t ≤ opt. Since there is an opti-
mal algorithm to split a tree T into a collection of cater-
pillars and applying an optimal split-sequence of G to T
yields a collection of caterpillars, too: c ≤ opt. Thus,
t + c ≤ 2 · opt. tu

9) Open Problems
• Approximation bounds for Split to Pathwidth M .

• Improved Bounds for Split to Caterpillar.

• Generalization to B > 1.

References
[1] Michael A. Bender, Gerth Stølting Brodal, Rolf Fagerberg, Riko

Jacob, and Elias Vicari. Optimal sparse matrix dense vector mul-
tiplication in the I/O-model. In Proceedings of SPAA ’07, pages
61–70, 2007.

[2] Hans L. Bodlaender and Ton Kloks. Efficient and constructive al-
gorithms for the pathwidth and treewidth of graphs. J. Algorithms,
21(2):358–402, 1996.

[3] Gero Greiner and Riko Jacob. Evaluating non-square sparse bilin-
ear forms on multiple vector pairs in the I/O-model. In Proceed-
ings of MFCS ’10, pages 393–404, 2010.

[4] Philipp Hupp and Riko Jacob. Tight bounds for low dimensional
star stencils in the external memory model. CoRR, abs/1205.0606,
2012.

ema
Text Box
Title: Parallel Main-Memory Indexing for Moving- 
Object Query and Update Workloads
Name: Darius Šidlauskas
Affiliation: Aarhus University




